Ninth-order Multistep Collocation Formulas for Solving Models of PDEs Arising in Fluid Dynamics: Design and Implementation Strategies

نویسندگان

چکیده

A computational approach with the aid of Linear Multistep Method (LMM) for numerical solution differential equations initial value problems or boundary conditions has appeared several times in literature due to its good accuracy and stability properties. The major objective this article is extend a multistep Partial Differential Equation (PDE) originating from fluid mechanics two-dimensional space conditions, as result importance utility models partial applications, particularly physical phenomena, such convection-diffusion models, flow problems. Thus, collocation formula, which based on orthogonal polynomials proposed. Ninth-order Collocation Formulas (NMCFs) were formulated through principle interpolation processes. theoretical analysis NMCFs reveals that they have algebraic order nine, are zero-stable, consistent, and, thus, convergent. implementation strategies comprehensively discussed. Some test presented evaluate efficacy applicability proposed formulas. Comparisons other methods also demonstrate new formulas’ productivity. Finally, figures illustrate behavior examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

development and implementation of an optimized control strategy for induction machine in an electric vehicle

in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...

15 صفحه اول

Some high-order Taylor-models based methods for solving PDEs

We present three different approaches to solving PDEs based Taylor-models. In each approach we stress a high accuracy which can be achieved with a grid of relatively low-order Taylor polynomials. In particular, in solving Dirichlet boundary problem for the Laplace equation with the grid of step h of quadratic Taylor polynomials we get the discretization error of order h^10. Similar results are ...

متن کامل

Multiscale RBF collocation for solving PDEs on spheres

In this paper, we discuss multiscale radial basis function collocation methods for solving certain elliptic partial differential equations on the unit sphere. The approximate solution is constructed in a multi-level fashion, each level using compactly supported radial basis functions of smaller scale on an increasingly fine mesh. Two variants of the collocation method are considered (sometimes ...

متن کامل

‎Multistep collocation method for nonlinear delay integral equations

‎The main purpose of this paper is to study the numerical solution of nonlinear Volterra integral equations with constant delays, based on the multistep collocation method. These methods for approximating the solution in each subinterval are obtained by fixed number of previous steps and fixed number of collocation points in current and next subintervals. Also, we analyze the convergence of the...

متن کامل

An ${cal O}(h^{8})$ optimal B-spline collocation for solving higher order boundary value problems

As we know the approximation solution of seventh order two points boundary value problems based on B-spline of degree eight has only ${cal O}(h^{2})$ accuracy and this approximation is non-optimal. In this work, we obtain an optimal spline collocation method for solving the general nonlinear seventh order two points boundary value problems. The ${cal O}(h^{8})$ convergence analysis, mainly base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2023

ISSN: ['2075-1680']

DOI: https://doi.org/10.3390/axioms12090891